
Real-Time Fusion of Image and Inertial Sensors 
for Navigation  

 
 

J. Fletcher, M. Veth, and J. Raquet 
Air Force Institute of Technology 

  
 
 
BIOGRAPHY   
 
Jordan Fletcher is a Communications and Electrical 
Engineering Officer in the United States Air Force.  He 
holds a B.S. in Computer Engineering from Tulane 
University.  He is currently a Computer Engineering 
Master’s student at the Air Force Institute of Technology, 
with a focus on navigation technology and exploitation of 
graphics hardware for general-purpose computing. 
 
Major Mike Veth is an Assistant Professor in the 
Department of Electrical and Computer Engineering at 
the Air Force Institute of Technology.  His current 
research focus is on the fusion of optical and inertial 
systems.  He received his Ph.D. in Electrical Engineering 
from the Air Force Institute of Technology, and a B.S. in 
Electrical Engineering from Purdue University. 
 
John Raquet is an Associate Professor in the Department 
of Electrical and Computer Engineering at the Air Force 
Institute of Technology, where he is also the Director of 
the Advanced Navigation Technology (ANT) Center.  He 
has been involved in navigation-related research for over 
17 years. 
 
ABSTRACT  
 
As evidenced by many biological systems, the fusion of 
optical and inertial sensors represents an attractive 
method for passive navigation.  In our previous work, a 
rigorous theory for optical and inertial fusion was 
developed for precision navigation applications.  The 
theory was based on a statistical transformation of the 
feature space based on inertial sensor measurements.  The 
transformation effectively constrained the feature 
correspondence search to a given level of a priori 
statistical uncertainty.  When integrated into a navigation 
system, the fused system demonstrated performance in 
indoor environments which were comparable to that of 
GPS-aided systems. 
 
In order to improve feature tracking performance, a robust 
feature transformation algorithm (Lowe’s SIFT) was 
chosen.  The SIFT features are ideal for navigation 

applications in that they are invariant to scale, rotation, 
and illumination.  Unfortunately, there exists a correlation 
between feature complexity and computer processing 
time.  This limits the effectiveness of robust feature 
extraction algorithms for real-time applications using 
traditional microprocessor architectures.  While recent 
advances in computer technology have made image 
processing more commonplace, the amount of 
information that can be processed is still limited by the 
power and speed of the CPU.  In this paper, a new theory 
which exploits the highly parallel nature of General 
Programmable Graphical Processing Units (GPGPU) is 
developed which supports deeply integrated optical and 
inertial sensors for real-time navigation. 
 
Recent advances in GPGPU technology have made real-
time, image-aided navigation a reality.  Our approach 
leverages the existing OpenVIDIA core GPGPU library 
and commercially available computer hardware to solve 
the image and inertial fusion problem.  The open-source 
libraries are extended to include the statistical feature 
projection and matching techniques developed in our 
previous research. 
 
The performance of the new processing method was 
demonstrated by integrating the inertial and image sensors 
on a commercially-available laptop computer containing a 
programmable GPU.  Experimental data collections have 
shown up to a 3000% improvement in feature processing 
speed over an equivalent CPU-based algorithm.  In this 
experimental configuration, frame rates of greater than 10 
Hz are demonstrated, which are suitable for real-time 
navigation.  Finally, the navigation performance of the 
new real-time system is shown to be identical to that of 
the old method which required lengthy post-processing. 
 
INTRODUCTION  
 
The advent of the Global Positioning System (GPS) has 
revolutionized the navigation community, and as a result 
we are increasingly dependent on navigation systems, and 
we want to be able to navigate in all environments.  While 
GPS works well in many environments, it is not ideal for 
navigation indoors, underground, in urban canyons, or in 
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the presence of intentional or unintentional radio 
frequency (RF) interference.  Unfortunately, many 
existing non-GPS forms of navigation have problems in 
the same types of environments. 
 
The navigation system presented in this paper is inspired 
by biological systems.  Many animals have the innate 
ability to navigate naturally simply using biological 
sensors.  Some animals, such as sea turtles, use the 
electro-magnetic fields of the Earth to navigate [13].  Ants 
and many other insects use chemical trails to follow a 
path [15].  More elaborate biological navigation systems 
use sonar sensors to get an estimate of terrain and distance 
[9].  However, all of these biological systems are 
susceptible to interference, jamming, and changing 
medium, and therefore exhibit the same weaknesses as 
GPS systems.  Animals that use passive sensors, such as 
bees, migratory birds, and humans, however, are not 
susceptible to these problems.  These animals all use 
inertial and imaging sensors to pick out landmarks in the 
environment and navigate from landmark to landmark 
with relative ease.  In addition, these sensors are passive, 
self-contained, and do not have the same weaknesses as 
GPS.   
 
When used separately, however, imaging and inertial 
sensors have drawbacks that can result in poor navigation 
performance. An inertial sensor relies upon dead-
reckoning [1] for navigation, which is susceptible to drift 
over time. Imaging sensors can have difficulty in 
identifying and matching good landmarks for 
navigation [3].  To solve this problem, the sensor readings 
in the navigation system were fused at a low level and 
used to correct each other.  
 
Previous image-aided inertial navigation systems have 
been a trade-off of power and performance.  Some have 
used a simplified image processing algorithm [30], or a 
priori navigation information [3], while others have 
simply post-processed navigation data [31], [3].  These 
solutions are not robust enough for use in autonomous 
navigation systems or as a viable GPS alternative.  The 
navigation system described in this paper achieves real-
time performance using a complex image processing 
algorithm that can work in a wide variety of 
environments. 
 
INERTIAL NAVIGATION 
 
Inertial navigation systems (INS) exploit measurements of 
specific force and angular rate to estimate the position, 
velocity, and attitude of the device. For six degree of 
freedom navigation, triads of accelerometers and 
gyroscopes are usually employed.  The inertial navigation 
system is inherently a dead-reckoning device as the 
navigation states are propagated by integration 
(cumulative summing) of sensor measurements.    As with 

all dead-reckoning navigation systems, the navigation 
error is subject to unconstrained errors [1], which are 
collectively defined as the sensor drift. 
 
The inertial navigation system errors can be estimated and 
corrected by incorporating additional measurements.  For 
terrestrial applications, the zero-velocity update is easily 
implemented and, as such, quite commonly used in 
systems such as [31],[20].  Another common 
measurement source for estimating the navigation state 
errors is the Global Positioning System [22],[30].  
Unfortunately, GPS measurements are not always 
available, which motivates the development of additional 
navigation state measurement sensors.  Navigation aiding 
using imaging sensors is described in the next section. 
 
IMAGE-AIDING 
 
Image sensors can also be used to correct an INS.  Most 
image-aided inertial systems work by first identifying 
features (landmarks, edges, corners) in an image.  The 
process of extracting features from the actual sensor 
readings is known as feature extraction, or feature 
transformation, of the image.  Image-matching algorithms 
match features from an image taken at one point in time 
to features from an image taken at a later point in time.  
The process of matching features between successive 
images is known as feature correspondence.   
 
The simplest way to perform feature correspondence is to 
perform a search over the entire space of another image, 
also known as an exhaustive search.  This procedure is 
obviously computation-intensive and costly, in terms of 
time and computation resources.  For example, in a 
system with Nk features in image k, the complexity of 
performing an exhaustive feature correspondence search 
in Big-O notation [11] is O (Nk * Nk+1).  This relationship 
is illustrated in Fig. 1. 
 

IMAGE Nk

IMAGE Nk+1

 
Figure 1: Exhaustive method of correspondence search.  
Given the projection of image Nk and successive image 
Nk+1 into feature space, the exhaustive correspondence 
search is carried out by attempting to match every feature 
from Nk to every feature in Nk+1. 

 



However, when other sensors are available, it helps to use 
these sensors to constrain the correspondence search 
space.  In an image-aided INS, inertial measurements can 
be used to predict feature locations from one image to the 
next.  The search area can then be constrained to a subset 
of the features in a successive image that are found within 
a certain distance from the predicted location.  The 
resulting complexity is O (Nk).  In addition, the difference 
between the predicted feature location and the actual 
feature location can be used to correct IMU biases.  The 
constrained search is shown in Fig. 2. 
 

IMAGE Nk

IMAGE Nk+1

Constrained Search

 
Figure 2: Constrained method of correspondence search.  
Given the projection of image Nk and successive image 
Nk+1 into feature space, the constrained correspondence 
search is carried out by attempting to match every feature 
from Nk to an constrained area around the predicted 
location in Nk+1.  
 
Systems that use feature matching have been of limited 
value in the past, because most image processing 
algorithms were not suited to navigation purposes.  Image 
processing for navigation requires features that can be 
uniquely identified despite movement of the sensor 
platform.  The platform movement results in features 
being viewed from multiple angles, distances, and among 
other similar objects.  To accomplish this feat, a feature 
has to have some kind of unique identifier that is invariant 
to changes in orientation and scale.  False positive 
identification is especially detrimental in feedback-
enabled navigation, since the landmark data is used to 
correct other system sensors.  False identification will 
corrupt the other sensor readings and lead to poor 
navigation prediction.  The main problem with using 
complex features, from a computation standpoint, is that 
feature extraction requires extensive computation [3].  
This problem is compounded by the fact that the identifier 
needs to be sufficiently complex to ensure uniqueness, 
which increases feature correspondence search times. 
 
To overcome this problem, past systems have used a 
priori environment information to choose features.  One 
such system, MOB-LAB, navigated streets by using the 

lines on the road as features [2].  The problem with this 
approach is that the environment becomes un-navigable 
when lines are unavailable, such as when the vehicle goes 
off-road.  Other systems, such as Minerva [29] and [21] 
tracked lights and ceiling tiles to determine their position 
at any epoch in time.  Algorithms that use a priori 
information in this manner can be classified into a subset 
of navigation systems that rely upon reference landmarks 
for navigation.  Such systems often use landmarks with a 
known, fixed coordinate (i.e., waypoints) to help guide 
and correct the navigation system.  These systems have 
been met with some recent success, as Stanford has found 
with their “Stanley” vehicle for the DARPA Grand 
Challenge, 2005 [26].  However, to make an image-aided 
navigation system work in unknown environments, it 
must choose features that are invariant to scale and 
rotation without any a priori feature information.   
 
SENSOR INTEGRATION 
 
The previous two sections described how position can be 
accurately determined using inertial sensor readings for 
dead-reckoning navigation and feature correspondence 
from image sensors to correct the IMU estimates.  
However, the IMU estimates are in three-dimensional 
coordinates, while the image features are found in a two-
dimensional Cartesian plane.  To get accurate 3D position 
for a feature, the 2D coordinate must be augmented to a 
3D coordinate, which requires additional information, 
namely, the line-of-sight distance from the navigating 
platform.  This is impossible in most situations using an 
image sensor alone.  A priori terrain maps are necessary 
to extract distance information using a monocular image 
sensor.  However, if the navigation platform has multiple 
image sensors (e.g., binocular vision), the distance to a 
feature can be calculated using information about the 
image sensors, their relation to each other, and their 
relation to the navigation platform [31].  Another way to 
obtain distance information is to use a single image sensor 
and a ranging sensor, such as LIDAR [27] or sonar [4]. 
 
Obviously, better results can be obtained using additional 
sensors.  To optimally use these additional sensors, the 
theory of multi-sensor fusion must be taken into account.  
This way the system can perform optimally given any 
number of sensors without redesigning the underlying 
system architecture.  The navigation system in this paper 
actively acquires sensor readings and fuses the data into a 
single, combined navigation estimate.  Therefore, the 
delay in navigation prediction is directly tied to two 
factors: the time it takes to acquire sensor readings and 
the time it takes to fuse the data. 
 
The navigation system presented in this paper ensures 
optimal sensor data acquisition by decoupling the sensor 
activity from the navigation state prediction.  Decoupling 
is accomplished by using a thread-safe, centrally-shared 



data storage object between all the sensors and the 
navigation component of the software.  Each sensor has 
the ability to write to a particular area of shared memory 
(section of the blackboard) and the navigation component 
has access to all the sensor data.  Thread synchronization 
for navigation reading and sensor writing is accomplished 
via use of mutually exclusive locks and conditions.  The 
blackboard architecture is not new.  It was developed by 
Artificial Intelligence researchers over a decade ago, and 
is described in detail in [8] and [5].  This architecture 
applied to sensor fusion was met with success in the 2005 
DARPA Grand Challenge [24].  The strength of this 
technique is that as more sensors are added to the 
platform, navigation predictions are not slowed down 
while waiting for sensor acquisition.  This makes the 
approach flexible and extensible for additional sensors.  
The blackboard architecture for a multi-agent (multi-
sensor/multi-thread) software platform is illustrated in 
Fig. 3. 
 

Blackboard (Data Repository)
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Sensor
Controller

Control Agent
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Figure 3: Blackboard architecture.  This software 
architecture allows multiple sensors to acquire data and 
write to a central, shared data repository.  Control agents 
can then access the shared sensor data and write policies 
that govern access to this data by multiple agents. 
 
The navigation component of the navigation system is 
responsible for fusing the acquired data that has been 
written to the blackboard into a single navigation 
prediction at any epoch in time.  This fusion is currently 
performed using an extended Kalman filter.  This fusion 
method was chosen because of its successful application 
in previous work [24], [21].  The conceptual design of the 
Kalman filter applied to multi-sensor fusion is shown in 
Fig. 4. 
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Figure 4: Conceptual Kalman filter for a multi-sensor 
system.  The previous state Xt-1 is used to create a 
prediction for the next state, Xt.  Multiple sensors are 
used as additional input to the prediction and combined 
in the Kalman filter to come up with the navigation 
prediction.  In addition, the Kalman filter can be used in a 
closed-feedback system to correct future predictions. 
 
The Kalman filter is an optimal, recursive, data 
processing algorithm used to estimate the state (position, 
heading and orientation) of a dynamic system from 
incomplete, noisy measurements (sensor readings).  To 
predict the current navigation state at any time, t, the state 
Xt is computed using the previous state Xt-1, and inputs 
from the system sensors.  In addition, the Kalman filter 
can compute the estimated accuracy of the state estimate.  
This accuracy is computed in the error covariance 
matrix, Pt. 
 
The second phase of a Kalman filter is the update phase, 
which uses measurement information from the current 
time to refine the prediction and come up with better 
estimates.  For this application, the measurement 
information is the residual results from feature 
correspondence. The residual distance between feature 
predictions and actual locations is used to adjust the 
biases for the inertial sensors.  The multi-sensor Kalman 
filter, adjusted for imaging and inertial fusion, is shown in 
Fig. 5.  For more information on Kalman filtering, refer to 
[21], [32] and [16]. 
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Figure 5: Kalman filter used for the image-aided inertial 
navigation system.  Images and Inertial Data are the 
sensor readings, which are used as inputs for the 
navigation predictions by the Feature Tracker and INS.  
The Kalman filter combines the predictions and performs 
feedback to correct the INS and Feature Tracker module.  
In this way, the Kalman filter removes errors from the 
INS trajectory. 



REAL-TIME PROCESSING 
 
Real-time processing has been redefined many times over 
the past few decades.  The term real-time originally 
referred to any system that could perform computations at 
least as fast as the real process it was simulating [12].  
This definition changed during the advent of thread 
priority scheduling and programmable microcontrollers.  
These technologies allowed a process to pre-empt the 
operating system, resulting in increased performance, 
reliability and predictability. 
 
Current real-time systems are now divided into two 
categories; hard real-time systems and soft real-time 
systems.  Both categories are governed by the idea of a 
deadline from an event to a system response.  The two 
differ in that a hard real-time system considers the system 
response after a deadline to be useless, whereas the soft 
real-time system will tolerate a missed deadline (usually 
with some impact on performance), and continue to 
operate [12].  Hard real-time systems are thus best suited 
to safety-of-life applications, while soft real-time systems 
are suited to applications that involve concurrent access 
with changing situations.   
 
The navigation system presented in this paper relies upon 
concurrent access to data from multiple sensors, and is 
therefore best suited for a soft real-time system.  The 
event associated with this real time system is sensor data 
acquisition, and the response is a navigation prediction.  
The deadline can vary depending on the application, but is 
limited by the maximum capture rate of the slowest 
sensors.  For example, a typical image sensor can capture 
an 800x600 monochrome image at 30 frames per second 
(FPS), or 30 Hz.  A typical IMU can capture inertial data 
at rates exceeding 100 Hz.  Therefore, the deadline should 
be set to 33 ms or greater, since that is the capture rate of 
the slowest sensor. 
 

Deadline 2 (image 2)

Acq Feature Extraction
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Figure 6: Deadline timing for 2 image sensor threads.  
Sensor 1 and sensor 2 simultaneously acquire images and 
perform parallel feature extraction on the GPU.  N1 and 
N2 represent the navigation calculations for sensor 1 and 
sensor 2, respectively, which are performed in serial.  The 
deadlines are the elapsed time between the initial image 
capture time and the time when the navigation prediction 
is made available. 
 

A dynamic deadline is utilized in this navigation system.  
Features are extracted from the image sensors as the 
images are acquired, and written to the data repository.  
The navigation component runs concurrently in a separate 
thread and accesses the sensor data from the data 
repository as it becomes available.  It uses this data to 
perform inertial propagation, a feature correspondence 
search, and combines all the data in a Kalman filter.  The 
total time between sensor acquisition and navigation state 
computation (deadline) is the sum of the time between the 
image capture signal and the navigation component 
computations.  The diagram in Fig. 6 illustrates this 
relationship. 
 
Processing navigation predictions concurrently with 
sensor data acquisition is much more complicated than a 
serial procedure.  The two processes need to be 
synchronized and controls need to be in place to ensure 
that sensor data is not acquired faster than it can be used.  
Data acquisition at a faster rate than data processing 
would overrun the data repository after a length of time.  
Synchronization for data structure reads and writes is 
achieved via mutually-exclusive locks and condition 
objects.  For this navigation system, navigation state 
computation is kept relatively simple to ensure that it runs 
at a much faster rate than sensor acquisition.  In addition, 
the computationally-intensive image processing step is 
coupled to the image sensor data acquisition, which adds 
an additional constraint and limits the sensor rate to one 
that is acceptable for processing.  The only problem with 
coupling image processing to the data acquisition step is 
that the image capture rate is limited by the speed of 
feature extraction. 
 
SIFT FEATURE EXTRACTION 
 
The feature extraction algorithm used for the navigation 
system presented in this paper is called the Scale Invariant 
Feature Transform, or SIFT [14].  Conceptually, SIFT 
works by first decomposing an image into a scale-space 
representation.  Decomposition results in a different type 
of information being available at each level of 
decomposition, but also allows the algorithm to separate 
extrema (local minima and maxima) in an image into the 
scale at which they are most prominent.  Extrema are 
chosen from a progressively-scaled set of images that 
have been reduced to a lower level of detail via Gaussian 
blurring.  Each resulting extremum is then assigned an 
orientation by taking a histogram of the gradient in a fixed 
area around it.  The gradient around the extremum is used 
to compute a distinctive descriptor that can be used for 
matching features. 
 



 
Figure 7: CPU vs. GPU timings for SIFT extraction for a 
GPU-based feature extraction program. For a 5x 
increase in width, the GPU experiences a 100 ms 
increase, while the CPU experiences over 400 ms 
increase in processing time. 
 
SIFT feature calculation is a time-consuming and 
computation-intensive process.  The table in Fig. 7 
summarizes the expected time to calculate SIFT features 
at various image resolutions and feature counts using a 
CPU and a GPU from [25]. 
 
The computation times for the CPU are not acceptable for 
real-time image-aided navigation.  The image 
measurements are used in the update phase of the Kalman 
filter to correct dead-reckoning measurements.  In 
between image measurements, the inertial data alone is 
used to determine the navigation prediction.  If the system 
uses a consumer-grade IMU, then the navigation solution 
can drift significantly between image measurements.  If 
the image measurements are far apart ( > 1 second ), the 
navigation solution will limited by the accuracy of the 
IMU sensor.  The data set above shows that feature 
extraction alone on a large image (1280x1024) would take 
over 1 second, which is unacceptable for an accurate 
navigation solution. 
 
Since sensor data acquisition is coupled to the speed of 
feature extraction, it is clear that the biggest navigation 
system gains come from faster image processing and 
feature extraction.  This enables more image updates, 
resulting in more error corrections on the inertial 
measurements. 
 
IMAGE PROCESSING ACCELERATION 
 
The navigation system presented in this paper leverages 
the power of the programmable graphics processing unit 
to speed up feature extraction.  Much like the 
programmable microprocessor was a leap forward in real-
time system programming; the programmable GPU is a 
leap forward in high performance computing using 
commodity hardware.  Typical speedups vary depending 
on implementation, but simple math operations performed 
on a GPU have found speedups between 30% and 400% 
over the CPU performance.  The speedup is due to both 
the hardware configuration and processor architecture. 

 
Modern video cards contain an onboard GPU dedicated to 
processing a limited number of operations on very large 
amounts of data.  By contrast, the CPU is designed to 
perform a large number of operations on a small amount 
of data.  This difference in purpose has led to divergent 
paths for CPU and GPU architecture.  A typical GPU will 
have several processing pipelines working in parallel with 
each other, while a single-core CPU has a single 
processing pipeline. 
 
Recent advances in multi-core CPU technology have 
made them more similar to the GPU in terms of 
architecture and performance.  However, the processing 
power of the GPU is growing at a rate faster than Moore’s 
Law [17], which models the CPU performance growth.  
The processing power gap is evident even when 
comparing older GPUs to single-core CPUs.  Leading 
edge consumer-grade GPUs doubled the performance of 
leading-edge CPUs [10].  The table in Fig. 8 summarizes 
the processing power of various newer GPU architectures 
vs. CPU architectures using the Linpack Giga-flops 
(GFLOPS) rating [6].  
 

GPU/CPU/Supercomputer GFLOPS 
Intel Pentium 4 10 
NV 5900 20 
Intel Dual Core 38 
Intel Quad Core 62 
NV 7800 GTX 200 
NV 8800 GTX 330 
Cray XT3 (10,000 CPU) 43,480 
IBM BlueGene (100,000 CPU) 280,600 

Figure 8: CPU vs. GPU vs. Supercomputer performance 
using the Linpack GFLOPS rating, a measure of billions 
of floating point operations possible per second.  The 
supercomputers are suffixed by the number of processors 
they contain. 
 
The table makes one point very clear: consumer-grade 
CPUs are outperformed in raw computational power by 
the specialized GPUs, and GPUs are only getting faster.  
One can make the case that GPUs are outmatched by the 
supercomputers on the list.  However, the supercomputers 
run thousands of processors in parallel to achieve their 
GFLOPS rating.  If they were scaled to a single processor, 
their rating would be one-hundredth that of a single GPU.  
The reason for the large disparity is the specialized 
architecture of the GPU versus the generalized 
architecture of the CPU.  The GPU was built to perform 
stream processing on large amounts of data. 
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Figure 9: Pipe and filter on a CPU-based system vs. 
GPU.  The CPU-based pipe and filter must perform serial 
operations on each element in the data stream, while a 
GPU can perform the same operation in parallel, using a 
kernel on parallel data sets.  
 
The stream-processing architecture also contributes to 
making the GPU well-suited for image processing 
applications.  While a CPU is designed to operate on data 
serially, the GPU is designed for parallel data processing.  
This means that the larger the data set, the more 
advantage is gained from stream processing.  One can 
view the difference as analogous to a pipe and filter 
architecture, where a CPU has a single pipe and multiple 
filters, whereas a GPU has multiple parallel pipes and 
multiple filters.  The CPU must unroll the operations in 
each filter and perform the filter operations on each data 
element, while the GPU can perform the operation on 
multiple sets of data in parallel [28].  The two 
architectures are illustrated in Fig. 9. 
 
GPU RENDERING PIPELINE 
 
The GPU is designed to work on streams of vertex and 
fragment data.  There are three basic stages to the 
rendering pipeline: vertex, texture, and fragment.  The 
stages are diagrammed in Fig. 10 and explained in further 
detail in the following section. 
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Figure 10: Programmable GPU rendering pipeline. 
Images and geometric primitives take different paths.  
Images are rendered by adding the image pixel values as 
a texture lookup, then rasterizing the entire image as 
geometry.  Geometric primitives are drawn using a vertex 
processor, then applying texture lookups. 
 

Vertices describe 2D points in 3D space which make up 
primitive geometric shapes for a scene.  The vertex data 
used to be static on non-programmable GPUs.  To make 
changes to a geometric shape, the data had to be 
transferred to the CPU, altered, and then transferred back 
to the GPU.  On modern programmable GPUs, vertices 
can be transformed in the GPU using custom vertex 
shader programs. 
 
Textures are images that can be mapped onto surfaces of 
geometric primitives created in the vertex stage.  In the 
texture stage of the rendering pipeline, the texture is 
referenced for the correct color to add to each fragment 
before they are converted to pixels. 
 
A fragment is the term used to describe intermediate data 
in the processing pipeline before a pixel is drawn to the 
screen.  Fragments can occupy more than one pixel 
location.  Fragment shaders are customizable on modern 
GPUs and can also perform memory reads during texture 
lookups. 
 
The last step of the graphics rendering pipeline is 
outputting pixels to the screen.  This can be done either 
using a conceptual framebuffer object or using pixel 
buffer objects.  The framebuffer is global “screen” 
memory.  It can be corrupted if windows are stacked on 
top of each other or if windows are moved partially off-
screen.  This problem is avoided by using pixel buffer 
objects to store pixel data for off-screen rendering. 
 
GENERAL-PURPOSE GPU 
 
To utilize the graphics rendering pipeline for general-
purpose computation, the data must be transformed to the 
native GPU format and architecture.  The simplest way to 
do so is by mapping input data to fragment data.  Custom 
vertex programs are written to change the geometry of the 
image as needed.  Custom fragment programs can then 
operate on a per-pixel basis, using lookups from the 
custom textures to transform color information for each 
fragment.  These vertex and fragment shader programs 
can be written using a variety of APIs and high-level 
shading languages.  For more information on 
programmable shaders and OpenGL, see [23] and [18]. 
 
The image-processing component of the navigation 
system described in this paper was written using the 
OpenGL API and Nvidia’s CG high-level shading 
language.  CG compiles C/C++-like shading programs 
into assembly language that can be understood by the 
GPU.  An existing GPU-based feature extraction 
algorithm, OpeNVIDIA [7], was used as the basis for the 
CG scripts and frame buffer objects.  The OpeNVIDIA 
fragment shader programs take data acquired from the 
image sensors and perform the SIFT feature extraction 
algorithm (described in the SIFT section) as progressive 



filters.  The filters are used to choose the best prospective 
feature candidates and compute SIFT descriptors for each 
feature.  To avoid unnecessary memory allocation and to 
keep feature processing on the GPU, feature information 
is stored in the high-performance texture memory that 
held the original image. 
 
EXPERIMENTAL RESULTS 
 
Experimental results from the navigation system have 
been very positive.  Sensor decoupling and multi-
threading alone provide a noticeable speedup in 
processing time.  GPU-accelerated feature extraction 
speedups are orders of magnitude greater than the 
expected baseline results, and free tremendous amounts of 
CPU capacity for other tasks.  Lastly, improvements to 
the algorithm and data structure reuse result in much more 
efficient processing and better performance 
characteristics. Results in each of these areas are 
described in the sessions that follow. 
 
RESULTS: SENSOR DECOUPLING 
 
The navigation system created in our previous work [31] 
was capable of post-processing navigation data and 
coming up with a navigation solution with near GPS-level 
accuracy.  The system suffered from slow navigation 
prediction computation because it was a single-threaded, 
serial application.  The new system is a multi-threaded, 
highly-parallel software platform, which matches well to 
multi-sensor fusion problems.  Data acquisition for each 
sensor was assigned to a separate thread, which alleviated 
problems of sensor priority and availability.   
 
Several simulations were run without using the GPU for 
feature extraction to test the effect of sensor decoupling 
on the overall system.  The simulations were run on a set 
of time-tagged images and inertial data during an indoor 
data collection experiment at AFIT in August, 2006.  The 
image, feature, and inertial data were all loaded from file 
on-the-fly, to emulate sensor readings.  The results were 
impressive despite the fact that all data was read from file, 
which classically results in worse performance.  For a 
simulation that lasted 277 seconds in “real-time”, the 
post-processing solution took 677 seconds to complete 
and the decoupled system took 276 seconds to complete, 
which meets the classic definition of real-time.  The 
completion time was a result of running the sensor 
“acquisition” (reading from a file) in serial.  The 
simulation was also run using parallel sensor acquisition, 
resulting in an additional 20% speedup.  Even without the 
parallel sensors, the new system shows a 2-3x speedup 
over the previous solution.  In addition, the navigation 
prediction was within 2 meters of the actual (true) 
position.  A similar speedup was found when running 
longer simulations as well. 
 

RESULTS: GPU ACCELERATION 
 
The initial results for GPU-accelerated feature extraction 
were also very impressive.  The feature extraction tests 
were performed on indoor images used for navigation, 
using a C#-based SIFT feature extraction program for the 
CPU [19], versus OpeNVIDIA for the GPU-based feature 
extraction.  The feature extraction step, typically the 
majority factor of a real-time deadline, was reduced from 
several seconds to milliseconds for high-resolution 
images. 
 
Additional tests were run using the GPU-accelerated 
feature extraction for navigation predictions.  The tests 
were set up using binocular image sensors and a 
consumer-grade IMU.  Initial results found sustainable 
frame rates of 10 to 16 FPS, which is suitable for use in 
real-time navigation.  The dynamic deadline for the 
experimental system was found to vary between 300 and 
500 ms, indicating that approximately 0.5 seconds of lag 
could be expected before the sensor platform would have 
reliable navigation data for any epoch in time.  (The 
impact of this delay could be negated by using the INS to 
propagate forward in time while the calculation is 
ongoing).  Navigation results from initial tests lacked 
accuracy due to poor sensor calibration.  This problem is 
currently being addressed and should be rectified soon.  
This problem illustrates the importance of sensor 
calibration for an accurate navigation solution. 
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Figure 11: CPU vs. GPU feature extraction times using 
OpeNVIDIA on indoor images used for navigation.  
Although processing times generally increase due to 
image size, CPU times show a much larger increase due 
to image size than the GPU. 
 
The additional benefit from performing feature extraction 
on the GPU is that the CPU is freed for other tasks, as can 
be seen in Fig. 12.  The majority of the CPU usage is due 



to navigation prediction calculations.  Further 
optimizations could be made by offloading more 
navigation computations to the GPU, which would free 
more CPU resources.  In addition, many of the Kalman 
Filter calculations could be done in parallel, which the 
GPU can perform very efficiently. 
 

 
Figure 12: CPU and GPU performance graph running 
the navigation system.  The graph was created using the 
gDebug tool from Nvidia.  CPU usage is approximately 
50% on average, GPU usage is approximately 20% on 
average. 
 
CONCLUSION 
 
The navigation system presented in this paper represents a 
new area to explore in precision non-GPS navigation.  
The system is biologically-inspired, works in real-time, 
and fuses image-aided and inertial sensors.  Two main 
strengths of this approach are the use of passive sensors 
for navigation and no requirements for a priori 
environment information.  These strengths enable the 
navigation system to work in a variety of environments 
where previous navigations systems would fail. 
 
The navigation system was designed with goals of near-
optimal multi-sensor fusion and real-time processing.  
Both were achieved by building on the blackboard 
architecture style.  This architecture allows the sensors to 
be decoupled from the navigation component, while 
simultaneously providing the navigation component 
access to all the sensor data.  The sensors are fused 
through the use of an extended Kalman filter, which has 
been used successfully by many researchers in the past for 
similar problems. 
 
The navigation system also harnesses the power of the 
Graphics Processing Unit to perform feature extraction on 
data from the image sensor.  The feature extraction 
algorithm used is the Scale Invariant Transform, or SIFT, 
which has been an algorithm of choice for many 
navigation applications.  SIFT’s main drawback is the 
computation required to extract features, which has 
previously kept it from being used for real-time 
applications.  This problem is overcome through the use 
of the GPU for general-purpose computation.  Initial 
results have found a 4-30x speedup in feature extraction, 
which is a drastic improvement over equivalent 
mathematical algorithm speedups due to GPU processing.  
These speedups over the expected results are due to 
efficient stream processing and the PCI express interface, 

which allows a much higher communications bandwidth 
from the CPU to GPU. 
 
Experimental results have seen a drastic improvement in 
processing speed for navigation simulations.  The speedup 
achieved from decoupling the sensors and multi-threading 
doubles the speed of the previous work.  The overall 
performance improvement has been approximately 10x–
20x in conjunction with the GPU-accelerated feature 
processing.  When taken in the context of live camera 
processing, the resulting navigation system can expect to 
run at several more frames per second, which results in a 
much more accurate navigation prediction. 
 
The navigation system presented in this paper has many 
interesting implications.  First, it runs real-time on 
mobile, commodity hardware.  This means that the 
navigation system can be easily duplicated and mounted 
onto mobile platforms.  Second, it runs in a variety of 
environments without the aid of GPS, waypoints or a 
priori information, making it well-suited to unknown, 
GPS-denied/unavailable environments.  Third, it does not 
consume as many CPU resources as the previous image-
aided inertial navigation system did.  By offloading the 
majority of the computation to the GPU, resources are 
freed to run additional applications, such as an artificial 
intelligence, networking, data storage, or map-building 
applications. 
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